Unit B - Practical 5

Gas laws - Simulation experiments

Safety

There are no safety issues concerning this experiment.

Apparatus and materials

- laptop with internet access

Introduction

In this simulation experiment you will verify the gas laws.
Boyle's law: for a given mass of gas kept at constant temperature

$$
P V=\text { constant or } P \propto \frac{1}{V}
$$

Charles' law: for a given mass of gas under constant pressure

$$
\frac{V}{T}=\text { constant or } \quad V \propto T
$$

Pressure law: for a given mass and volume of gas

$$
\frac{P}{T}=\text { constant } \quad \text { or } \quad P \propto T
$$

Procedure

1 Go to the phet website and download the 'Gas properties' simulation (http://phet.colorado.edu/en/simulation/gas-properties)

2 On the right-hand menu click the 'Measurement Tools >>' control box and tick the 'Ruler'. Align the movable edge of the vessel to the 1 nm mark on the ruler. Use the ruler to measure the dimensions of the container and calculate its volume.

3 Pump some gas into the vessel (push the full length of the handle of the pump only once) and wait a few seconds.

Boyle's law

4 On the right-hand menu on the top check the 'Temperature' option to keep it constant. Record the values of the volume and pressure.

5 Decrease the volume of the vessel by moving the movable edge by 1 nm . Wait for a few seconds and measure the pressure. Calculate the new volume of the container. Record your measurements in a suitable table.

6 Repeat step 5 four more times.
7 Plot a graph of pressure against volume. Answer question 1.

Charles' law

8 First check the 'None' option on the right-hand menu on the top and then press 'Reset'. Pump the handle to insert some gas in the vessel and wait a few seconds.

9 On the right-hand menu on the top check the 'Pressure' option to keep it constant. Record the values of the volume and temperature.

10 Increase the temperature by approximately 10 K . Wait for a few seconds and measure the volume of the vessel. Record the exact value of the temperature and your measurements of the volume in a suitable table.

11 Repeat step 10 four more times.
12 Plot a graph of volume against temperature. Answer question 2.

Pressure law

13 Press 'Reset' and pump the handle to insert some gas in the vessel and wait a few seconds.
14 On the right-hand menu on the top check the 'Volume' option to keep it constant. Record the values of the pressure and temperature.

15 Increase the temperature by 10K. Wait for a few seconds and measure the pressure. Record your measurements in a suitable table.

16 Repeat step 15 four more times.
17 Plot a graph of pressure against temperature. Answer question c.

Questions

1 Questions on Boyle's law simulation experiment:
a What is the shape of the line and what relationship does it represent?
Does this confirm Boyle's law?
b What axes should you use to get a linear graph?
c What happens if you try to reduce the volume further?

2 Question on Charles' law simulation experiment:
What is the shape of the line and what relationship does it represent?
Does this confirm Charles' law?

3 Questions on Pressure law simulation experiment:
a What is the shape of the line? What relationship does it represent?
Does this confirm the Pressure law?
b If you extrapolate the line until pressure is zero, what is this value of temperature?

